🔀 爱智康

爱智康 高考研究中心 高中数学 张勇凯 桑和瑞 何军凤 闫泓水 2016 年普通高等学校招生全国统一考试(江苏卷)数学 I

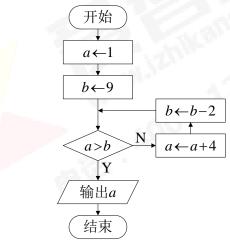
参考公式:

样本数据 x_1, x_2, \dots, x_n 的方差 $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$, 其中 $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$.

棱柱的体积V = Sh, 其中S 是棱柱的底面积, h 是高.

棱锥的体积 $V = \frac{1}{3}Sh$, 其中S 是棱锥的底面积, h 为高.

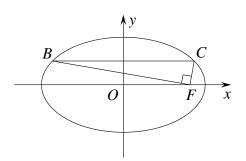
- 一、填空题: 本大题共 14 小题,每小题 5 分,共计 70 分. 请把答案填写在答题卡相应位置上.
- 1. 已知集合 $A = \{-1,2,3,6\}$, $B = \{x \mid -2 < x < 3\}$, 则 $A \cap B = \underline{\hspace{1cm}}$.
- 2. 复数 z = (1+2i)(3-i), 其中 i 为虚数单位,则 z 的实部是______
- 4. 已知一组数据 4.7, 4.8, 5.1, 5.4, 5.5, 则该组数据的方差是______.
- 5. 函数 $y = \sqrt{3 2x x^2}$ 的定义域是 .
- 6. 如图是一个算法的流程图,则输出 a 的值是



- 7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷 2 次,则出现向上的点数之和小于 10 的概率是
- 8. 已知 $\{a_n\}$ 是等差数列, S_n 是其前n项和.若 $a_1 + a_2^2 = -3$, $S_5 = 10$,则 a_9 的值是______.
- 10. 如图, 在平面直角坐标系 xOy 中, F 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右焦点,直线 $y = \frac{b}{2}$ 与椭圆交于 B, C 两点,且 $\angle BFC = 90^\circ$,则该椭圆的离心率是______.

🔀 爱智康

(4000-121-121

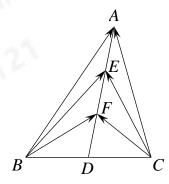


11. 设 f(x) 是定义在 **R** 上且周期为 2 的函数,在区间[-1,1)上 $f(x) = \begin{cases} x+a, & -1 \le x < 0, \\ \left| \frac{2}{5} - x \right|, & 0 \le x < 1, \end{cases}$

其中 $a \in \mathbf{R}$,若 $f\left(-\frac{5}{2}\right) = f\left(\frac{9}{2}\right)$,则f(5a)的值是_____.

$$\int x - 2y + 4 \ge 0,$$

- 12. 已知实数 x, y 满足 $\begin{cases} x-2y+4 \ge 0, \\ 2x+y-2 \ge 0, \\ 3x-y-3 \le 0, \end{cases}$ 则 x^2+y^2 的取值范围是______.
- 13. 如图,在 $\triangle ABC$ 中, D是BC的中点,E,F是AD上两个三等分点, $\overrightarrow{BA} \cdot \overrightarrow{CA} = 4$, $\overrightarrow{BF} \cdot \overrightarrow{CF} = -1$, 则 *BE* · *CE* 的值是____



- 14. 在锐角三角形 ABC 中, $\sin A = 2\sin B\sin C$,则 $\tan A\tan B\tan C$ 的最小值是
- 二、解答题: 本大题共6小题, 共计90分. 请在答题卡指定区域内作答, 解答时应写出文字说明, 证明过 程或演算步骤.
- 15. (本小题满分 14 分)

在 $\triangle ABC$ 中, AC = 6, $\cos B = \frac{4}{5}$, $C = \frac{\pi}{4}$.

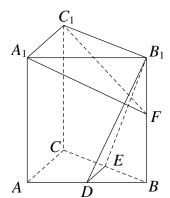
- (1) 求 AB 的长;
- (2) 求 $\cos\left(A \frac{\pi}{6}\right)$ 的值.

16. (本小题满分 14 分)

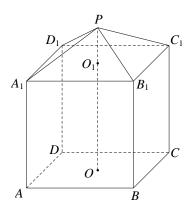
如图,在直三棱柱 $ABC-A_1B_1C_1$ 中, D,E 分别为 AB,BC 的中点,点 F 在侧棱 B_1B 上,且 $B_1D\perp A_1F$, $A_1C_1\perp A_1B_1$.

求证: (1) 直线 DE // 平面 A₁C₁F;

(2) 平面 $B_1DE \perp$ 平面 A_1C_1F .



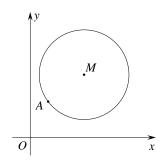
- 17. (本小题满分 14 分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥 $P-A_iB_iC_iD_i$,下部分的形状是正四棱柱 $ABCD-A_iB_iC_iD_i$ (如图所示),并要求正四棱柱的高 O_iO 是正四棱锥的高 PO_i 的 4 倍.
- (1) 若 AB = 6 m, $PO_1 = 2$ m, 则仓库的容积是多少;
- (2) 若正四棱锥的侧棱长为6m,当 PO_1 为多少时,仓库的容积最大?



18. (本小题满分 14 分)

如图,在平面直角坐标系 xOy 中,已知以 M 为圆心的圆 $M: x^2 + y^2 - 12x - 14y + 60 = 0$ 及其上一点 A(2,4).

- (1) 设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
- (2) 设平行于 OA 的直线 l 与圆 M 相交于 B,C 两点,且 BC = OA,求直线 l 的方程;
- (3) 设点T(t,0)满足:存在圆M上的两点P和Q,使得 $\overrightarrow{TA}+\overrightarrow{TP}=\overrightarrow{TQ}$,求实数t的取值范围.



19. (本小题满分 14 分)

已知函数 $f(x) = a^x + b^x (a > 0, b > 0, a \neq 1, b \neq 1)$.

- ① 求方程 f(x) = 2 的根;
- ② 若对于任意 $x \in \mathbb{R}$,不等式 $f(2x) \ge mf(x) 6$ 恒成立,求实数 m 的最大值;
- (2) 若0 < a < 1, b > 1, 函数g(x) = f(x) 2有且只有1个零点,求ab的值.

20. (本小题满分 14 分)

记 $U = \{1, 2, \dots, 100\}$. 对数列 $\{a_n\}$ $(n \in \mathbb{N}^*)$ 和U 的子集T ,若 $T = \emptyset$,定义 $S_T = 0$; 若 $T = \{t_1, t_2, \dots, t_k\}$,定义 $S_T = a_{t_1} + a_{t_2} + \dots + a_{t_k}$. 例如: $T = \{1, 3, 66\}$ 时, $S_T = a_1 + a_3 + a_{66}$. 现设 $\{a_n\}$ $(n \in \mathbb{N}^*)$ 是公比为 3 的等比数列,且当 $T = \{2, 4\}$ 时, $S_T = 30$.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 对任意正整数 k (1 \leq k \leq 100),若T \subseteq $\{1,2,\cdots,k\}$,求证: S_T < a_{k+1} ;
- (3) 设 $C \subseteq U$, $D \subseteq U$, $S_C \geqslant S_D$, 求证: $S_C + S_{C \cap D} \geqslant 2S_D$.

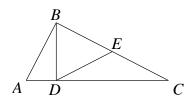
数学Ⅱ(附加题)

21. [选做题]本题包括 A、B、C、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.

A. [选修 4-1: 几何证明选讲] (本小题满分 10 分)

如图,在 $\triangle ABC$ 中, $\angle ABC = 90^{\circ}$, $BD \perp AC$,D为垂足, $E \stackrel{?}{=} BC$ 中点.

求证: $\angle EDC = \angle ABD$.



B. [选修 4-2: 矩阵与变换] (本小题满分 10 分)

已知矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$$
,矩阵 \mathbf{B} 的逆矩阵 $\mathbf{B}^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 2 \end{bmatrix}$,求矩阵 \mathbf{AB} .

C. [选修 4-4: 坐标系与参数方程](本小题满分 10 分)

在平面直角坐标系 xOy 中,已知直线 l 的参数方程为 $\begin{cases} x=1+\frac{1}{2}t,\\ y=\frac{\sqrt{3}}{2}t, \end{cases}$ 作为参数),椭圆 C 的参数方程为

 $\begin{cases} x = \cos \theta, \\ y = 2\sin \theta, \end{cases}$ (θ 为参数), 设直线 l 与椭圆 C 相交于 A, B 两点, 求线段 AB 的长.

D. [选修 4-5: 不等式选讲] (本小题满分 10 分)

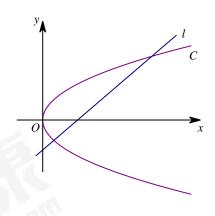
设
$$a > 0$$
, $|x-1| < \frac{a}{3}$, $|y-2| < \frac{a}{3}$, 求证: $|2x+y-4| < a$.

[必做题]第22题、第23题,每题10分,共计20分. 请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.

22. (本小题满分 10 分)

如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线 $C:y^2=2px(p>0)$.

- (1) 若直线l过抛物线C的焦点,求抛物线C的方程;
- (2) 已知抛物线C上存在关于直线l对称的相异两点P和Q.
 - ①求证:线段PQ上的中点坐标为(2-p,-p);
 - ②求 p 的取值范围.



- 23. (本小题满分 10 分)
- (1) 求 $7C_6^3 4C_7^4$ 的值;

2016年普通高等学校招生全国统一考试(江苏卷)参考答案

- 一、填空题: 本大题共14小题,每小题5分,共计70分.
- 1. $\{-1,2\}$;
- 2. 5;
- 3. $2\sqrt{10}$;
- 4. 0.1;
- 5. [-3,1];
- 6. 9;
- 7. $\frac{5}{6}$;
- 8. 20;
- 9. 7;
- 10. $\frac{\sqrt{6}}{3}$;
- 11. $-\frac{2}{5}$;
- 12. $\left\lceil \frac{4}{5}, 13 \right\rceil$;
- 13. $\frac{7}{8}$;
- 14. 8:
- 二、解答题:本大题共6小题,共计90分.
- 15. (1) $:: \cos B = \frac{4}{5}$, B 为三角形的内角

$$\therefore \sin B = \frac{3}{5}$$

$$\therefore \frac{AB}{\sin C} = \frac{AC}{\sin B}$$

$$\therefore \frac{AB}{\frac{\sqrt{2}}{2}} = \frac{6}{\frac{3}{5}}, \quad \mathbb{P}: \quad AB = 5\sqrt{2};$$

(2) $\cos A = -\cos(C+B) = \sin B \sin C - \cos B \cos C$

$$\therefore \cos A = -\frac{\sqrt{2}}{10}$$

又:: A 为三角形的内角

$$\therefore \sin A = \frac{7\sqrt{2}}{10}$$

16. (1):: *D*, *E* 为中点, ∴ *DE* 为 △*ABC* 的中位线

∴ *DE*//*AC*

又 $::ABC-A_1B_1C_1$ 为棱柱, $::AC//A_1C_1$

 $\therefore DE // 平面 A_1C_1F$;

(2) :: ABC - A₁B₁C₁ 为直棱柱, :: AA₁ ⊥平面 A₁B₁C₁

 $\therefore AA_1 \perp A_1C_1$, $\nabla \therefore A_1C_1 \perp A_1B_1$

且 $AA_1 \cap A_1B_1 = A_1$, $AA_1, A_1B_1 \subset$ 平面 AA_1B_1B

 $\therefore A_1C_1 \perp$ 平面 AA_1B_1B ,

又: $DE//A_1C_1$,: $DE \perp$ 平面 AA_1B_1B

又 $:: A_1F \subset$ 平面 AA_1B_1B , $:: DE \perp A_1F$

又 $:: A_1F \perp B_1D$, $DE \cap B_1D = D$, 且 $DE, B_1D \subset$ 平面 B_1DE

:: 平面 B_1DE \bot 平面 A_1C_1F .

17. (1) $PO_1 = 2 \text{ m}$, $\emptyset OO_1 = 8 \text{ m}$,

$$V_{P-A_1B_1C_1D_1} = \frac{1}{3}S_{ABCD} \cdot PO_1 = \frac{1}{3} \times 6^2 \times 2 = 24 \text{ m}^3, \quad V_{ABCD-A_1B_1C_1D_1} = S_{ABCD} \cdot OO_1 = 6^2 \times 8 = 288 \text{ m}^3,$$

$$V = V_{P-A_1B_1C_1D_1} + V_{ABCD-A_1B_1C_1D_1} = 312 \text{ m}^3$$
,

故仓库的容积为312 m3;

(2) 设 $PO_1 = x \text{ m}$,仓库的容积为V(x)

$$\text{III } OO_1 = 4x \text{ m}, \quad A_1O_1 = \sqrt{36 - x^2} \text{ m}, \quad A_1B_1 = \sqrt{2} \cdot \sqrt{36 - x^2} \text{ m},$$

$$V_{P-A_1B_1C_1D_1} = \frac{1}{3}S_{ABCD} \cdot PO_1 = \frac{1}{3} \times \left(\sqrt{72 - 2x^2}\right)^2 \times x = \frac{1}{3}\left(72x - 2x^3\right) = 24x - \frac{2}{3}x^3 \text{ m}^3,$$

$$V_{ABCD-A_1B_1C_1D_1} = S_{ABCD} \cdot OO_1 = \left(\sqrt{72 - 2x^2}\right)^2 \times 4x = 288x - 8x^3 \text{ m}^3$$
,

$$V(x) = V_{P-A_1B_1C_1D_1} + V_{ABCD-A_1B_1C_1D_1} = 24x - \frac{2}{3}x^3 + 288x - 8x^3 = -\frac{26}{3}x^3 + 312x(0 < x < 6),$$

$$V'(x) = -26x^2 + 312 = -26(x^2 - 12)(0 < x < 6)$$
,

当
$$x \in (0,2\sqrt{3})$$
时, $V'(x) > 0$, $V(x)$ 单调递增,

当
$$x \in (2\sqrt{3},6)$$
时, $V'(x) < 0$, $V(x)$ 单调递减,

因此, 当 $x=2\sqrt{3}$ 时, V(x)取到最大值,

即 $PO_1 = 2\sqrt{3}$ m 时,仓库的容积最大.

18. (1)因为N在直线x=6上,设N(6,n),因为与x轴相切,

则圆
$$N$$
 为 $(x-6)^2 + (y-n)^2 = n^2$, $n > 0$

又圆 N 与圆 M 外切,圆 $M: (x-6)^2 + (x-7)^2 = 25$,

则|7-n|=|n|+5,解得n=1,即圆N的标准方程为 $(x-6)^2+(y-1)^2=1$;

(2) 由题意得 $OA=2\sqrt{5}$, $k_{OA}=2$ 设 l:y=2x+b ,则圆心 M 到直线 l 的距离

$$d = \frac{\left|12 - 7 + b\right|}{\sqrt{2^2 + 1}} = \frac{\left|5 + b\right|}{\sqrt{5}},$$

$$\text{FI} BC = 2\sqrt{5^2 - d^2} = 2\sqrt{25 - \frac{\left(5 + b\right)^2}{5}}, \quad BC = 2\sqrt{5}, \quad \text{FI} 2\sqrt{25 - \frac{\left(5 + b\right)^2}{5}} = 2\sqrt{5},$$

解得b=5或b=-15, 即l: y=2x+5或y=2x-15;

$$\overrightarrow{TA} + \overrightarrow{TP} = \overrightarrow{TQ}$$
, $\mathbb{P} \overrightarrow{TA} = \overrightarrow{TQ} - \overrightarrow{TP} = \overrightarrow{PQ}$, $\mathbb{P} |\overrightarrow{TA}| = |\overrightarrow{PQ}|$,

$$\left|\overrightarrow{TA}\right| = \sqrt{\left(t-2\right)^2 + 4^2} ,$$

$$\mathbb{Z}\left|\overrightarrow{PQ}\right| \leq 10$$
,

即
$$\sqrt{(t-2)^2+4^2} \le 10$$
,解得 $t \in [2-2\sqrt{21},2+2\sqrt{21}]$,

对于任意
$$t \in \left[2-2\sqrt{21},2+2\sqrt{21}\right]$$
, 欲使 $\overrightarrow{TA} = \overrightarrow{PQ}$,

此时 $|\overline{TA}| \le 10$,只需要作直线 TA 的平行线,使圆心到直线的距离为 $\sqrt{25 - \frac{|\overline{TA}|^2}{4}}$,

必然与圆交于P、Q两点,此时 $|\overrightarrow{TA}| = |\overrightarrow{PQ}|$,即 $\overrightarrow{TA} = \overrightarrow{PQ}$,

因此对于任意 $t \in \left[2-2\sqrt{21},2+2\sqrt{21}\right]$,均满足题意,

综上 $t \in \left[2-2\sqrt{21},2+2\sqrt{21}\right]$.

则
$$(2^x)^2 - 2 \times 2^x + 1 = 0$$
,即 $(2^x - 1)^2 = 0$,则 $(2^x - 1)^2 = 0$,则

② 由题意得
$$2^{2x} + \frac{1}{2^{2x}} \ge m \left(2^x + \frac{1}{2^x}\right) - 6$$
恒成立,

令
$$t = 2^x + \frac{1}{2^x}$$
 ,则由 $2^x > 0$ 可得 $t \ge 2\sqrt{2^x \times \frac{1}{2^x}} = 2$,

此时 $t^2 - 2 \ge mt - 6$ 恒成立,即 $m \le \frac{t^2 + 4}{t} = t + \frac{4}{t}$ 恒成立

$$\therefore t \ge 2$$
 时 $t + \frac{4}{t} \ge 2\sqrt{t \cdot \frac{4}{t}} = 4$, 当且仅当 $t = 2$ 时等号成立,

因此实数m的最大值为4.

(2)
$$g(x) = f(x) - 2 = a^x + b^x - 2$$
, $g'(x) = a^x \ln a + b^x \ln b = a^x \ln b \left[\frac{\ln a}{\ln b} + \left(\frac{b}{a} \right)^x \right]$,

由
$$0 < a < 1$$
 , $b > 1$ 可得 $\frac{b}{a} > 1$, $\diamondsuit h(x) = \left(\frac{b}{a}\right)^x + \frac{\ln a}{\ln b}$, 则 $h(x)$ 递增,

而
$$\ln a < 0$$
, $\ln b > 0$, 因此 $x_0 = \log_{\frac{b}{a}} \left(-\frac{\ln a}{\ln b} \right)$ 时 $h(x_0) = 0$,

因此
$$x \in (-\infty, x_0)$$
 时, $h(x) < 0$, $a^x \ln b > 0$, 则 $g'(x) < 0$;

$$x \in (x_0, +\infty)$$
 时, $h(x) > 0$, $a^x \ln b > 0$, 则 $g'(x) > 0$;

则
$$g(x)$$
 在 $(-\infty, x_0)$ 递减, $(x_0, +\infty)$ 递增,因此 $g(x)$ 最小值为 $g(x_0)$,

$$x > \log_b 2$$
 时, $a^x > 0$, $b^x > b^{\log_b 2} = 2$, 则 $g(x) > 0$;

因此
$$x_1 < \log_a 2$$
且 $x_1 < x_0$ 时, $g(x_1) > 0$,因此 $g(x)$ 在 (x_1, x_0) 有零点,

$$x_2 > \log$$
 且 $x_2 > x_0$ 时, $g(x_2) > 0$,因此 $g(x)$ 在 (x_0, x_2) 有零点,

则 g(x) 至少有两个零点,与条件矛盾;

② 若 $g(x_0) \ge 0$, 由函数 g(x) 有且只有 1 个零点, g(x) 最小值为 $g(x_0)$,

可得
$$g(x_0)=0$$
,

$$\pm g(0) = a^0 + b^0 - 2 = 0$$

因此
$$x_0 = 0$$
,

因此
$$\log_{\frac{b}{a}} \left(-\frac{\ln a}{\ln b} \right) = 0$$
,即 $-\frac{\ln a}{\ln b} = 1$,即 $\ln a + \ln b = 0$,

因此 $\ln(ab) = 0$, 则 ab = 1.

20. (1)当 $T=\{2,4\}$ 时, $S_T=a_2+a_4=a_2+9a_2=30$,因此 $a_2=3$,从而 $a_1=\frac{a_2}{3}=1$, $a_n=3^{n-1}$;

(2)
$$S_T \le a_1 + a_2 + \dots + a_k = 1 + 3 + 3^2 + \dots + 3^{k-1} = \frac{3^k - 1}{2} < 3^k = a_{k+1}$$
;

(3) 设 $A = \mathbb{C}_{C}(C \cap D)$, $B = \mathbb{C}_{D}(C \cap D)$, 则 $A \cap B = \emptyset$, $S_{C} = S_{A} + S_{C \cap D}$, $S_{D} = S_{B} + S_{C \cap D}$, $S_{C} + S_{C \cap D} - 2S_{D} = S_{A} - 2S_{B}$, 因此原题就等价于证明 $S_{A} \geqslant 2S_{B}$.

由条件 $S_C \geqslant S_D$ 可知 $S_A \geqslant S_B$.

- ① 若 $B = \emptyset$,则 $S_B = 0$,所以 $S_A \ge 2S_B$.
- ② 若 $B \neq \emptyset$, 由 $S_A \geqslant S_B$ 可知 $A \neq \emptyset$, 设A中最大元素为l, B中最大元素为m, 若 $m \geqslant l+1$, 则由第(2)小题, $S_A < a_{l+1} \leqslant a_m \leqslant S_B$,矛盾。 因为 $A \cap B = \emptyset$,所以 $l \neq m$,所以 $l \geqslant m+1$,

$$S_B \leqslant a_1 + a_2 + \dots + a_m = 1 + 3 + 3^2 + \dots + 3^{m-1} = \frac{3^m - 1}{2} < \frac{a_{m+1}}{2} \leqslant \frac{a_l}{2} \leqslant \frac{S_A}{2}, \quad \exists I \ S_A > 2S_B.$$

综上所述, $S_A \ge 2S_B$,因此 $S_C + S_{C \cap D} \ge 2S_D$.

数学Ⅱ(附加题)

- 21. [选做题]本题包括 A、B、C、D 四小题,请选定其中两小题,
- A. [选修 4-1: 几何证明选讲] (本小题满分 10 分)

解: 由 $BD \perp AC$ 可得 $\angle BDC = 90^{\circ}$,

由 $E \stackrel{\cdot}{=} BC$ 中点可得 $DE = CE = \frac{1}{2}BC$,

则 $\angle EDC = \angle C$,

由 $\angle BDC = 90^{\circ}$ 可得 $\angle C + \angle DBC = 90^{\circ}$,

由 $\angle ABC = 90^{\circ}$ 可得 $\angle ABD + \angle DBC = 90^{\circ}$,

因此 $\angle ABD = \angle C$,

又 $\angle EDC = \angle C$ 可得 $\angle EDC = \angle ABD$.

B. [选修 4-2: 矩阵与变换] (本小题满分 10 分)

解:
$$\mathbf{B} = (\mathbf{B}^{-1})^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{4} \\ 0 & \frac{1}{2} \end{bmatrix}$$
, 因此 $\mathbf{AB} = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{4} \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & \frac{5}{4} \\ 0 & -1 \end{bmatrix}$.

C. [选修 4-4: 坐标系与参数方程](本小题满分 10 分)

解: 直线l方程化为普通方程为 $\sqrt{3}x-y-\sqrt{3}=0$,

椭圆 C 方程化为普通方程为 $x^2 + \frac{y^2}{4} = 1$,

因此
$$AB = \sqrt{\left(1 + \frac{1}{7}\right)^2 + \left(0 + \frac{8\sqrt{3}}{7}\right)^2} = \frac{16}{7}$$
.

D. [选修 4-5: 不等式选讲] (本小题满分 10 分)

解: 由
$$|x-1| < \frac{a}{3}$$
可得 $|2x-2| < \frac{2a}{3}$,

$$|2x+y-4| \le |2x-2|+|y-2| < \frac{2a}{3} + \frac{a}{3} = a$$
.

[必做题]第22题、第23题,每题10分,共计20分.

22. 解: (1)::l:x-y-2=0, ::l = x轴的交点坐标为(2,0)

即抛物线的焦点为(2,0), $\therefore \frac{p}{2} = 2$

$$\therefore y^2 = 8x;$$

(2)① 设点
$$P(x_1, y_1)$$
, $Q(x_2, y_2)$

则:
$$\begin{cases} y_1^2 = 2px_1 \\ y_2^2 = 2px_2 \end{cases}, \quad \text{即} \begin{cases} \frac{y_1^2}{2p} = x_1 \\ \frac{y_2^2}{2p} = x_2 \end{cases}, \quad k_{PQ} = \frac{y_1 - y_2}{\frac{y_1^2}{2p} - \frac{y_2^2}{2p}} = \frac{2p}{y_1 + y_2}$$

又::P,Q 关于直线l 对称, :: $k_{PQ} = -1$

$$\mathbb{E}[y_1 + y_2 = -2p, \quad \therefore \frac{y_1 + y_2}{2} = -p]$$

又:: PQ 中点一定在直线 l 上

$$\therefore \frac{x_1 + x_2}{2} = \frac{y_1 + y_2}{2} + 2 = 2 - p$$

:: 线段 PQ 上的中点坐标为(2-p,-p):

② :: 中点坐标为(2-p,-p)

$$\therefore \begin{cases} y_1 + y_2 = -2p \\ x_1 + x_2 = \frac{{y_1}^2 + {y_2}^2}{2p} = 4 - 2p \end{cases} \exists \iint \begin{cases} y_1 + y_2 = -2p \\ {y_1}^2 + {y_2}^2 = 8p - 4p^2 \end{cases}$$

$$\therefore \Delta > 0$$
, $(2p)^2 - 4(4p^2 - 4p) > 0$, $\therefore p \in (0, \frac{4}{3})$.

23. **A**: (1) $7C_6^3 - 4C_7^4 = 7 \times 20 - 4 \times 35 = 0$;

(2)对任意的 $m \in \mathbb{N}^*$,

② 假设 $n = k(k \ge m)$ 时命题成立,

$$\mathbb{U}\left(m+1\right)C_{m}^{m}+\left(m+2\right)C_{m+1}^{m}+\left(m+3\right)C_{m+2}^{m}+\cdots+kC_{k-1}^{m}+\left(k+1\right)C_{k}^{m}=\left(m+1\right)C_{k+2}^{m+2},$$

当n=k+1时,

左边=
$$(m+1)$$
C_m^m + $(m+2)$ C_{m+1}^m + $(m+3)$ C_{m+2}^m + \cdots + k C_{k-1}^m + $(k+1)$ C_k^m + $(k+2)$ C_{k+1}^m = $(m+1)$ C_{k+2}^{m+2} + $(k+2)$ C_{k+1}^m,

右边=
$$(m+1)$$
 C_{k+3}^{m+2} ,

$$\overline{\text{min}}(m+1)C_{k+3}^{m+2}-(m+1)C_{k+2}^{m+2}$$
,

$$= (m+1) \left[\frac{(k+3)!}{(m+2)(k-m+1)!} - \frac{(k+2)!}{(m+2)(k-m)!} \right]$$

$$= (m+1) \times \frac{(k+2)!}{(m+2)!(k-m+1)!} \left[k+3-(k-m+1) \right]$$

$$= (k+2) \frac{(k+1)!}{m!(k-m+1)!}$$

$$= (k+2) C_{k+1}^{m}$$

因此
$$(m+1)C_{k+2}^{m+2}+(k+2)C_{k+1}^{m}=(m+1)C_{k+3}^{m+2}$$
,

因此左边=右边,

因此n=k+1时命题也成立,

综合①②可得命题对任意 $n \ge m$ 均成立.

另解: 因为
$$(k+1)$$
C $_k^m = (m+1)$ C $_{k+1}^{m+1}$, 所以

左边=
$$(m+1)$$
 $C_{m+1}^{m+1}+(m+1)$ $C_{m+2}^{m+1}+\cdots+(m+1)$ $C_{n+1}^{m+1}=(m+1)$ $(C_{m+1}^{m+1}+C_{m+2}^{m+1}+\cdots+C_{n+1}^{m+1})$

又由
$$\mathbf{C}_{n}^{k} = \mathbf{C}_{n-1}^{k} + \mathbf{C}_{n-1}^{k-1}$$
,知

$$C_{n+2}^{m+2} = C_{n+1}^{m+2} + C_{n+1}^{m+1} = C_n^{m+2} + C_{n+1}^{m+1} + C_{n+1}^{m+1} = \cdots = C_{m+2}^{m+2} + C_{m+2}^{m+1} + \cdots + C_{n+1}^{m+1} = C_{m+1}^{m+1} + C_{m+2}^{m+1} + \cdots + C_{n+1}^{m+1}$$
,所以,左边=右边。

2016 年普通高等学校招生全国统一考试(江苏卷) 选填解析

1.

【答案】{-1,2};

【解析】由交集的定义可得 $A \cap B = \{-1,2\}$.

2.

【答案】5;

【解析】由复数乘法可得z=5+5i,则则z的实部是5.

3.

【答案】2√10;

【解析】 $c = \sqrt{a^2 + b^2} = \sqrt{10}$, 因此焦距为 $2c = 2\sqrt{10}$.

4.

【答案】 0.1;

【解析】
$$\bar{x} = 5.1$$
, $s^2 = \frac{1}{5} (0.4^2 + 0.3^2 + 0^2 + 0.3^2 + 0.4^2) = 0.1$.

5.

【答案】[-3,1];

【解析】 $3-2x-x^2 \ge 0$,解得 $-3 \le x \le 1$,因此定义域为[-3,1].

6.

【答案】9:

【解析】 a,b 的变化如下表:

а	1	5	9
b	9	7	5

则输出时a=9.

7.

【答案】 $\frac{5}{6}$;

【解析】将先后两次点数记为(x,y),则共有 $6\times6=36$ 个等可能基本事件,其中点数之和大于等于 10 有 (4,6),(5,5),(5,6),(6,4),(6,5),(6,6) 六种,则点数之和小于 10 共有 30 种,概率为 $\frac{30}{36}=\frac{5}{6}$.

8.

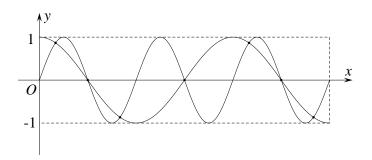
【答案】20;

【解析】设公差为d,则由题意可得 $a_1 + (a_1 + d)^2 = -3$, $5a_1 + 10d = 10$,解得 $a_1 = -4$,d = 3,则 $a_9 = -4 + 8 \times 3 = 20$.

9.

【答案】7:

【解析】画出函数图象草图, 共7个交点.



10.

【答案】
$$\frac{\sqrt{6}}{3}$$
;

【解析】由题意得
$$F(c,0)$$
,直线 $y = \frac{b}{2}$ 与椭圆方程联立可得 $B\left(-\frac{\sqrt{3}a}{2}, \frac{b}{2}\right)$, $C\left(\frac{\sqrt{3}a}{2}, \frac{b}{2}\right)$, $D\left(\frac{\sqrt{3}a}{2}, \frac{b}{2}\right)$ $D\left(\frac{\sqrt{3$

11.

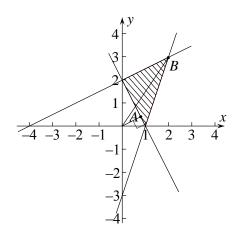
【答案】
$$-\frac{2}{5}$$
;

【解析】由题意得
$$f\left(-\frac{5}{2}\right) = f\left(-\frac{1}{2}\right) = -\frac{1}{2} + a$$
 , $f\left(\frac{9}{2}\right) = f\left(\frac{1}{2}\right) = \left|\frac{2}{5} - \frac{1}{2}\right| = \frac{1}{10}$, $f\left(-\frac{5}{2}\right) = f\left(\frac{9}{2}\right)$ 可得 $-\frac{1}{2} + a = \frac{1}{10}$, 则 $f\left(-\frac{3}{2}\right) = f\left(-\frac{3}{2}\right) = f\left(-\frac{1}{2}\right) = -1 + a = -1 + \frac{3}{5} = -\frac{2}{5}$.

12.

【答案】
$$\left[\frac{4}{5},13\right]$$
;

【解析】在平面直角坐标系中画出可行域如下



 $x^2 + y^2$ 为可行域内的点到原点距离的平方.

可以看出图中A点距离原点最近,此时距离为原点A到直线2x+y-2=0的距离,

$$d = \frac{\left|-2\right|}{\sqrt{4+1}} = \frac{2\sqrt{5}}{5}$$
 , $\log \left(x^2 + y^2\right)_{\min} = \frac{4}{5}$,

图中B点距离原点最远,B点为x-2y+4=0与3x-y-3=0交点,则B(2,3),

则
$$\left(x^2 + y^2\right)_{\text{max}} = 13$$
.

13.

【答案】 $\frac{7}{8}$;

【解析】令
$$\overrightarrow{DF} = \vec{a}$$
, $\overrightarrow{DB} = \vec{b}$, 则 $\overrightarrow{DC} = -\vec{b}$, $\overrightarrow{DE} = 2\vec{a}$, $\overrightarrow{DA} = 3\vec{a}$,

则
$$\overrightarrow{BA} = 3\overrightarrow{a} - \overrightarrow{b}$$
, $\overrightarrow{CA} = 3\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{BE} = 2\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{CE} = 2\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{BF} = \overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{CF} = \overrightarrow{a} + \overrightarrow{b}$,

曲
$$\overrightarrow{BA} \cdot \overrightarrow{CA} = 4$$
, $\overrightarrow{BF} \cdot \overrightarrow{CF} = -1$ 可得 $9\overrightarrow{a}^2 - \overrightarrow{b}^2 = 4$, $\overrightarrow{a}^2 - \overrightarrow{b}^2 = -1$, 因此 $\overrightarrow{a}^2 = \frac{5}{8}$, $\overrightarrow{b}^2 = \frac{13}{8}$,

因此
$$\overrightarrow{BE} \cdot \overrightarrow{CE} = 4\overrightarrow{a}^2 - \overrightarrow{b}^2 = \frac{4 \times 5}{8} - \frac{13}{8} = \frac{7}{8}$$
.

14.

【答案】8;

【解析】由 $\sin A = \sin(\pi - A) = \sin(B + C) = \sin B \cos C + \cos B \sin C$, $\sin A = 2\sin B \sin C$,

可得 $\sin B \cos C + \cos B \sin C = 2 \sin B \sin C$ (*),

由三角形 ABC 为锐角三角形,则 $\cos B > 0$, $\cos C > 0$,

在(*)式两侧同时除以 $\cos B\cos C$ 可得 $\tan B + \tan C = 2 \tan B \tan C$,

则
$$\tan A \tan B \tan C = -\frac{\tan B + \tan C}{1 - \tan B \tan C} \times \tan B \tan C$$
,

由 $\tan B + \tan C = 2 \tan B \tan C$ 可得 $\tan A \tan B \tan C = -\frac{2(\tan B \tan C)^2}{1 - \tan B \tan C}$,

 \diamondsuit $\tan B \tan C = t$, 由 A, B, C 为锐角可得 $\tan A > 0$, $\tan B > 0$, $\tan C > 0$,

由(#)得 $1-\tan B \tan C < 0$,解得t > 1

$$\tan A \tan B \tan C = -\frac{2t^2}{1-t} = -\frac{2}{\frac{1}{t^2} - \frac{1}{t}},$$

$$\frac{1}{t^2} - \frac{1}{t} = \left(\frac{1}{t} - \frac{1}{2}\right)^2 - \frac{1}{4}$$
,由 $t > 1$ 则 $0 > \frac{1}{t^2} - \frac{1}{t} \ge -\frac{1}{4}$,因此 $\tan A \tan B \tan C$ 最小值为 8,

当且仅当t=2时取到等号,此时 $\tan B + \tan C = 4$, $\tan B \tan C = 2$,

解得 $\tan B = 2 + \sqrt{2}$, $\tan C = 2 - \sqrt{2}$, $\tan A = 4$ (或 $\tan B$, $\tan C$ 互换), 此时 A, B, C 均为锐角.

